Lecture 17. Principles of multiple scattering in the
atmosphere. Radiative-transfer equation for solar
radiation 1n a plane-parallel atmosphere.

Objectives:

1. Concepts of the direct and diffuse (scattered) solar radiation.

2. Source function and a radiative transfer equation for the diffuse solar radiation.
3. Single scattering approximation.

4. Legendre polynomial expansion of the scattering phase function.

Reguired reading:

LO2: 3.4, 6.1, Appendix E




1. Concepts of the direct and diffuse solar radiation.

o The solar radiation field 1s traditionally considered as a sum of two distinctly
different components: direct and diffuse: I=1 dir T I dif
Direct solar radiation 1s a part of solar radiation filed that has survived the extinction
passing a layer with optical depth 7% and 1t abeys the Beer-Bouguer-Lambert (extinction)

law:

Lo = Toexp(=T"/ it;) [17.1]

where Iy 1s the solar intensity at a given wavelengths at the top of the atmosphere and g

15 a cosine of the solar zenith angle By (P = cos(By)).

The direct solar flux is

Fr =1, Iy exp(—t" /) [17.2]
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2.Source function and a radiative transfer equation
for the diffuse solar radiation.

Diffuse radiation arises from the light that undergoes one scattering event (single

scattering) or many {(multiple scattering).
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Recall Lectures 2- 3 where we have defined the source function

J.l = {]l thermal T I scattering } / ﬁej.
where j;.__ thermal 15 the thermal emission ( .,F'_,-__mmm = ﬁa__,-_ B_,-_ (7))
and jl_sm""i“g 15 the re-radiation from multiple scattering.

Using the volume scattering coefficient Bsy, and the phase function P(p, @, @’,@’), we

have
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NOTE: Recall the scattering phase function P(u, @, *.@’) (1.c., the element of the
scattering matrix Pyp) represents the angular distribution of scattered energy as a function

of direction. By the definition (see Lecture13), 1t 1s normalized as

| :
— [P(@)dQ =1
T g
where @ 1s the scattering angle

cos(B) = cos(0)cos(8) + sin(0)sin(0) cos(p'-9) = w’p + (1-p?)2(1-pH'? cos(@'-)

Scattering of the direct beam is the source of diffuse radiation:
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The boundary condition for diffuse radiation 1s [{oc, g, @) — 0 for p < (.



Thus the source function for diffuse solar radiation may be written as two components

irl
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[17.4]
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where the @y 1s the single scattering albedo and P 1s the scattering phase function.

NOTE: In Eq.[17.4], the first term on the right-hand side shows that the phase function
redirects the incoming intensity in the direction (W.@”) to the direction (W, @), and the

integrals account for all possible scattering events within the 4m solid angle.

# The source function for scattering Eq.[17.4] 1s more complicated than a thermal
source function:
(1) It involves conditions throughout the atmosphere, while the thermal source
function depends on local conditions only;
(11} The phase function P(W, ¢, W.@") may be a very complex function of the

directions {and, in general, state of polarization).



Plane-Parallel Solar Radiative Transfer Equation

Mostly we will 1ignore horizontal variability (assume a plane-parallel atmosphere)
and omit thermal emission in the shortwave.

The monochromatic solar radiative transfer equation is then
dl(p, ¢ . woopm ol 1 .
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The first term on right 1s the extinction and the second is the scattering source.

Usually the phase function depends only on the scattering angle ©:

cos® = cosfcosd + sinfsind cos(d’ — o)

Often we use optical depth as the vertical coordinate:
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Recall the radiative transfer equation defined in Lecture 2 for a plane-parallel atmosphere
dl AT 1)

pH—t———=[ (T l:0)— J (T: 1;0)
ar

Thus, using the source function for scattering, we can write the radiative transfer

equation for the diffuse radiation as (omitting the subscript dif n ')
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NOTE: Eq.[17.5] 1z an mtegro-differential equation. To solve Eq.[17.5]. one needs to
know the scattering coefficient By, , absorption coefficient B3 and scattering phase

function P(u, @, 0’.@’) as a function of wavelength in each atmospheric laver.

Eq.[17.5] can be simplified if there 15 no dependency on the azimuth angle.
For azimuthally independent case, we may define the phase function as
ix
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Using Eq.[17.6], we may write the azimuthally independent radiative transfer

equation for the diffuse radiation

p 1
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;r% =Tl }—Ty'j J KT, )y P ydu — 2 ,- Fo Pl =ty yexp(=T/ ty ) [17.7]
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~ To find a solution of the radiative transfer equation for diffuse radiation (i.c..
to solve Eq.[17.5]) ., various approximate and “exact™ techniques have been
developed:

Approximate methods:

1) Single scattering approximations (this lecture)
1) Two-stream approximations (Lecture 18)

1il) Eddington and Delta- Eddington approximations (Lecture 18)

“Exact” methods:

1) Discrete-ordinate technique (Lecture 20)
1) Adding-doubling technique (Lecture 21)

1il) Monte-Carlo technique (Lecture 22)



3. Single scattering approximation.

[f light has been scattered only once, the source function from Eq.[17.3] becomes

( i
J(T,1,¢) = ﬁ FyP(L, .1, ) exp=t/ i) (78]

and using the solution (derived in Lecture 2) of the radiation transfer in a plane-parallel
atmosphere bounded by on two sides at =0 and t=1=:
for upward intensity (reflected)
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and downward intensity (transmitted)

I‘l (T.—u.p) = I‘l (0, = .0 )exp( _:T}



we can write the solution for diffuse radiation in a single scattering approximation as

T-"?-_
INtiuo)y=1.(t* u.p)exp( - ——)
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10, TT-7T T o
+——”FDP{,u.m.—,uDﬁU}Iexp{ —[ + hdt
pmo4r ; u I
l l T
[T @)=1;(0,—u,@)exp( ——)
1
1 t'-17 1’ [17.90]
=0 FoP(—p.@.—U,, @D}Jew;p{ —[ + hdz’
i 4arr e oy

Assuming that there is no diffuse downward radiation at the top of the atmosphere
l
[ (0—u. )=
and no upward diffuse radiation at the surface (i.e.. no reflection from the surface)

1'%, 1,0)=0 [17.10]



Then from Eq.[17.9a,b] for finite atmosphere of the optical depth T=t-, we have the
reflected and transmitted diffuse intensities
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¢ For the single scattering approximation, the diffuse intensities are directly

proportional to the phase function.

NOTE: the single scattering approximation is valid for the optically thin atmosphere (i.e.,

small optical depth).




First Order Scattering Solution Example
First order scattering usually implies 7% < 1, so solution simplifies to
wP(e) 77

lm
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Molecular Rayleigh scattering at wavelength A — (0.7 pgm.
Optical depth from molecular scattering formula i1s 7,4 — 0.037.
TOA solar flux at A — 0.7 pm is Sg — 1400 W m=2 pm—1,

Solar geometry: fy — 307, @g — 1807 (pg — 0.866)

Viewing geometry: # — 60°, ¢ — 0° (0 — 0.5).

Scattering angle 1s therefore @ = 907, Ravleigh phase function is

3
P(Oe) _l“ - cos? ) 3/

First order solution 1s then
0.750.037

Iirli,ta, é) — (1400 W m 2pm ) —— = 62 W m 2o Ly~
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4. Legendre polynomial expansion of the scattering
phase function.

The phase function may be numerically expanded in Legendre polynomials with a finite

number of terms N as
¥
P{cos@}zzt’a:ﬂ{cos@} [17.14]
I=0

where @ is the scattering angle
cos(0) = cos(0")cos(B) + sin(0')sin(0) cos(p'-@) = L' + (l—p"'zjm(l—ﬁ)m cos(¢'-p)
and m; is the expansion coefficients expressed as

|
(J; = 2;;1 j!’{cos G) P (cos O)d cos( O )« (=0, 1,....N [17.15]

where: Po=1 Pr=a P (r’%:rg—]j,/:? Pl =1

NOTE: Orthogonal properties of the Legendre polynomials:
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Eq.[17.14] can be expressed in the terms of associated Legendre polynomials

I"'I

N
Plu.p.u'.o’) = Z Z o P ()P (u)ycos( mi{p ' — @) [17.16]

m=0 f=m
where
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i [ =m,...,N; D<m<N
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m;m = (2 - 5D,m )m

and o m is the Kronecker delta: dpn = 1 for m=0 and otherwise &g =0
[n similar manner, we may expand the diffuse intensity in the cosine series

It u.p) = Z I"(r.pu)ycos( m(ep, —@)) [17.17]

m=0

Using Egs.[17.16] and [17.17] and the orthogonality of the associated Legendre
polvnomials, the equation of the radiative transfer for the diffuse intensity (Eq.[17.7])

splits into (N+1) independent equations in the form

il " . m [} 4 mnm ] m S m , ,
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m=f == azimuthal independent case:

From Eq.[17.16], the azimuth-independent phase function (defined by Eq.[17.6]) can be

expressed as
N
Plu.u'y=> @, P, ()P, (1) [17.19]
I=0

For this case Eq.[17.18] simplifies to (omitting the superscript 0 for m=())

Juf”(fﬂ I(r. I)——Z @ P (u jP u N (T, 1 ydu' —
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Phase Function Examples

Asymmetry parameter - measures degree of forward scattering
Lo _
g = E/.—l Plcos®)cosOdeos © = wy /3
Rayleigh phase function:
wo=1 w =10 {4.!2:1/2 w=0171=2
Henyey-Greenstein phase function - often used surrogate for Mie

l—g2

Pra(©) = — =7
HEL™) (1 + g2 —2gcosO)3/2

H-G phase function in forward direction: Py (0°) = (1 +g) /(1 — g)°.
H-G function in backward direction: Py (180°) = (1 —g¢)/(1 + g)>
H-G phase function in Legendre polynomials:

wr = (20 + 1)g'



Mie and Henyey-Greenstein Phase Functions
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Water droplets A=1.05 gm
10 The Henyey-Greenstein phase function is very different from the Mie phase func-
[T tion for backward directions (© = 907), which means that it is not equivalent for
s radiance fields, although it usually adequate for flux calculations.
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Comparison of Mie and Henyey-Greenstein phase function with same asymmetry parameter g.



